Hands-On Graph Neural Networks Using Python by Maxime Labonne

Skip to product information
1 of 1

Hands-On Graph Neural Networks Using Python by Maxime Labonne

Regular price
Checking stock...
Regular price
Checking stock...
Proud to be B-Corp

Our business meets the highest standards of verified social and environmental performance, public transparency and legal accountability to balance profit and purpose. In short, we care about people and the planet.

The feel-good place to buy books
  • Free delivery in Ireland
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • Proud to be a B Corp – A Business for good
  • Buy-back with Ziffit

Hands-On Graph Neural Networks Using Python by Maxime Labonne

Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps Purchase of the print or Kindle book includes a free PDF eBook Key Features Implement -of-the-art graph neural architectures in Python Create your own graph datasets from tabular data Build powerful traffic forecasting, recommender systems, and anomaly detection applications Book DescriptionGraph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery. Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you’ll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps. By the end of this book, you’ll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.What you will learn Understand the fundamental concepts of graph neural networks Implement graph neural networks using Python and PyTorch Geometric Classify nodes, graphs, and edges using millions of samples Predict and generate realistic graph topologies Combine heterogeneous sources to improve performance Forecast future events using topological information Apply graph neural networks to solve real-world problems Who this book is forThis book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you’re new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.
Maxime Labonne is currently a senior applied researcher at Airbus. He received a M.Sc. degree in computer science from INSA CVL, and a Ph.D. in machine learning and cyber security from the Polytechnic Institute of Paris. During his career, he worked on computer networks and the problem of representation learning, which led him to explore graph neural networks. He applied this knowledge to various industrial projects, including intrusion detection, satellite communications, quantum networks, and AI-powered aircrafts. He is now an active graph neural network evangelist through Twitter and his personal blog.
SKU Unavailable
ISBN 13 9781804617526
ISBN 10 1804617520
Title Hands-On Graph Neural Networks Using Python
Author Maxime Labonne
Condition Unavailable
Binding type Paperback
Publisher Packt Publishing Limited
Year published 2023-04-14
Number of pages 354
Cover note Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
Note Unavailable